Background

Model fitting \Rightarrow optimization problem

- Models in science (e.g., comput. neuroscience)
 - Moderately costly evaluation (0.1 \sim 10 s)
 - Typical budget 10^4 – 10^6 func. evaluations.
- Noise or roughness of the likelihood landscape
- Gradients often unavailable

What about Bayesian optimization (BO)? [1]

- Great at optimizing very costly black-box functions.
- Relatively unused in scientific fields
 - Too slow, typical budget < 100 func. evaluations.
 - Unknown performance vs. other optimizers [2]
 - Might require additional technical knowledge

Contributions of this paper

- A novel hybrid BO algorithm, Bayesian Adaptive Direct Search (BADS) [3]
- Tested BADS & 16 optimizers on both artificial functions and real datasets and models
- Released BADS as a free MATLAB toolbox
 - What about Python? See Conclusions

Key Ideas

- BADS follows mesh adaptive direct search [4,5]
 - Alternates POLL and SEARCH stages
- Keeps local Gaussian process (GP) approximation of the objective function
- POLL: ‘dumb’ near model-free direct search
 - Rescale poll vectors by GP length scales
- SEARCH: ‘smart’ local search via BO
 - Fast local optimization of the acquisition function via CMA-ES inspired search
 - Multiple local search covariance matrices (chosen based on performance via heuristics algorithm)
 - Aggressive: SEARCH goes on until BO fails to find a better optimum several times
- POLL provides failsafe method when SEARCH via BO stops working (e.g., due to bad GP model)

Optimization algorithms

- BADS $+$ 16 other optimizers in MATLAB
 - Popular methods, e.g. fminsearch, fmincon
 - Competitive optimizers, e.g. mcs and CMA-ES
 - Vanilla Bayesian optimization (bayesopt)
 - As [6] but w/ hyperparameter optimization
 - Noise-aware snobfit and noisy CMA-ES
- For all methods, default settings (no fine-tuning)
- 50 runs of each algorithm on each test function

Problems

- Artificial functions. (BB8089; not shown here, see [3])
 - Both deterministic and noisy functions.
- Total 288 test functions with $D \in [3, 6, 10, 15, 20]$
- Six studies in comput. neuroscience (ccn17)
 - Six real datasets (subjects or neurons) per study
 - Optimize log likelihood for given models
- Total 36 test functions with $D \in [6, 9, 10, 12, 13]$

Conclusions

- BADS generally outperforms other optimizers
- Second best: CMA-ES or fmincon, it depends
- Vanilla Bayesian Optimization fails miserably

When should BADS be used?

- Problems up to $D \sim 15$
- Noisy or jagged func. landscape
- Model evaluation $\gtrsim 0.1$ s

Future directions

- Port BADS to other languages (e.g., Python)
 - Interested in helping? Let’s talk!
- Check alternatives to GPs
- Combine with smart multi-start method
- Support for variable and tunable precision [7]
- Go from heuristics to approximate inference

References